A Role for RUNX3 in Inflammation-Induced Expression of IL23A in Gastric Epithelial Cells

نویسندگان

  • Yit Teng Hor
  • Dominic Chih-Cheng Voon
  • Jason Kin Wai Koo
  • Huajing Wang
  • Wen Min Lau
  • Hassan Ashktorab
  • Shing Leng Chan
  • Yoshiaki Ito
چکیده

RUNX3 functions as a tumor suppressor in the gastric epithelium, where its inactivation is frequently observed during carcinogenesis. We identified IL23A as a RUNX3 target gene in gastric epithelial cells. This was confirmed in a series of in vitro analyses in gastric epithelial cell lines. In elucidating the underlying regulatory network, we uncovered a prominent role for the TNF-α/NF-κB pathway in activating IL23A transcription. Moreover, the activating effect of TNF-α was markedly augmented by the infection of Helicobacter pylori, the primary cause of human gastritis. Of note, H. pylori utilized the CagA/SHP2 pathway to activate IL23A, as well as the induction of the NOD1 pathway by iE-DAP. Importantly, RUNX3 synergized strongly with these physiologically relevant stimuli to induce IL23A. Lastly, we present evidence for the secretion of IL23A by gastric epithelial cells in a form that is distinct from canonical IL-23 (IL23A/IL12B).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of CDH1&RUNX3 Expression in Cancerous and Normal Tissue of Patients With Gastric Cancer

Introduction: Gastric cancer is a multifactorial disease and the fourth most common cancer in the world and the second cause of death from cancer. This study was designed and performed to investigate CDH1 and RUNX3 genes expression in healthy and tumor marginal tissue of people with gastric cancer. Methods: In this case-control study, 64 samples including 32 samples of gastric tumor tissue a...

متن کامل

Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...

متن کامل

Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...

متن کامل

Role of Helicobacter pylori on differential expression of angiogenic markers in gastric adenocarcinoma

Animal studies showed that male gastric tissues respond more rapidly to Helicobacter pylori (H.pylori) infection but the possible mechanisms remained unclear. There is no data about gender specific activity of Androgen receptor (AR) as an independent unfavorable prognostic factor in gastric cancer and its interactions with H.pylori and angiogenesis in both genders. To compare the pathogenesis o...

متن کامل

RUNX3 regulates vimentin expression via miR-30a during epithelial–mesenchymal transition in gastric cancer cells

Runt-related transcription factor 3 (RUNX3) is a putative tumour suppressor via regulating the expression of a series of target genes. Clinical studies demonstrated that loss of RUNX3 expression is associated with gastric cancer progression and poor prognosis, but the underlying mechanism is not entirely clear. Accumulating evidence shows that the epithelial-mesenchymal transition (EMT) plays a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014